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Abstract

The minimax grid matching problem is a fundamental combinatorial problem
associated with the average case analysis of algorithms. The problem has

.P- arisen in a number of interesting and seemingly unrelated areas, including
C. wafer-scale integration of systolic arrays, two-dimensional discrepancy
' problems, and testing pseudorandom number generators. However, the minimax
C... grid matching problem is best known for its application to the maximum up-

right matching problem. The maximum up-right matching problem was originally
defined by Karp, Luby and Marchetti-Spaccamela in association with algorithms

S - for 2-dimensional bin packing. More recently, the up-right matching problem
L.- has arisen in the average case analysis of on-line algorithms for

1-dimensional bin -packing and dynamic allocation.,

* *~In this paper, we solve both the minimax grid matching problem and the maximum
up-right matching problem. As a direct result, we obtain tight upper bounds
on the average case behavior of the best algorithms known for 2-dimensional
bin packing, 1-dimensional on-line packing and on-line dynamic allocation.
The results also solve a long-open question in mathematical statistics.
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1. Introduction

Consider a square with area N in the plane that contains N grid points arranged
in a regularly spaced /K x v array and N random points located independently and ,.

randomly according to the uniform distribution on the square. For example, see Figure 1.
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Figure 1: A square with area N containing a regularly spaced y'IY x VN grid (denoted

with black dots) and N uniformly distributed random points (denoted with x's).

For any particular set of N random points P, let L(P) denote the minimum length
such that there exists a perfect matching of the (random) points in P to the grid points in
the square for which the distance between every pair of matched points is at most L(P). 99
In other words, L(P) is the minimum over all perfect matchings of the maximum distance
between any pair of matched points, or more simply the minimax matching length for
P. As an example, Figure 2 illustrates two matchings, one that achieves the minimax
matching length and one that does not.

Longest ~
matching I
distance

X Shorter
longjest

X /matching x
X distance

Y X" *-

(a) (b)

Figure 2: Two possible matchings for a set of random points, one which achieves the

irnanmax matching length (b) and one which does not (a).
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d Algorithmically speaking, the problem of computing the minimax matching length for
S.. any set P is relatively straightforward, and is not of concern in this paper. Nor are we

interested in the worst case value of L(P) over all P, which is trivially E(v§-). Rather,
we are interested in the expected value of L(P) for random P.

Initially, one might hope that the expected value of L(P) is a constant independent of

N since every random point is within distance V2/2 of a grid point. With high probability,
however, the same is not true for every grid point. In particular, it is not difficult to show
that with probability exceeding 1- 1 there is a circular region with O(log N) area in the
square that does not contain any random points at all, and hence L(P) > fl(\/1gN) with
high probability. For example, see Figure 3.

X XX X X X X X

X X X X XX X X X X X

X Circle of area
X O(IogNJ not

X X X containing any

" xrandom points

• . -"X X X ,X

Figure 3: Collection of N random points P for which there is a circle of area E(log N)
not containing any random points. The grid point (not shown here) nearest to the center
of this circle is fl(v1j) away from every random point and hence, L(P) _ 11(/--N)
for this example.

Although the minimax grid matching problem (that of determining the expected value
of L(P) for random P ), has not to our knowledge been directly considered before, Leighton %
and Leiserson [131 and Ajtai, Koml6s and Tusnady [i] considered similar problems, and
developed probabilistic divide-and-conquer techniques that show L(P) g O(log N) with
high probability. The resulting O(V'1gN) gap in the bounds for the expected value of
L(P) remained for some time until Shor [21, 22J proved that L(P) > A(log3 / 4 N) with very
high probability* (i.e., with probability exceeding 1 - 1/N' where a = fl(v/Ig N)). Shor's
result was substantially more difficult than the rather elementary fl( vI N) bound, and
suggested that the minimax grid matching problem possessed a deeper structure than one
might initially realize.

In this paper, we complete the asymptotic analysis of the minimax grid matching
problem by proving that L(P) < O(log s/ N) with very high probability. Hence L(P) =

9(log3 / ' N) with very high probability, and the expected value of L(P) is 9(log s / 4 N).

Aside from being an interesting combinatorial problem, the improved upper bound for
Henceforth, we will reserve the phrase "with high probability" to mean "with probability exceeding

1 - 1/N' for any constant a > 1,* and the phrase "with very high probability" to mean "with probability

exceeding I - 1/N" where a = fl(V'lgN).
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typical values of L(P) has important implications for the average case behavior of a wide
variety of algorithms. For example, as a direct consequence of this result, we now know that ..
the 1-dimensional Best Fit bin packing algorithm wastes E(V-Nlog a/ 4 N) space with very :-
high probability when packing N items with sizes determined by identical and independent
distributions that are symmetric about 1/2 in [0,1]. Similar consequences hold for the
Karp-Luby-Marchetti-Spaccamela 2-dimensional bin packing algorithm and the Coffman-
Leighton Best Fit Aligned dynamic allocation algorithm. Our result also has implications
for the maximum up-right matching problem, a long open discrepancy problem, wafer-scale
integration of systolic arrays, and potentially for testing pseudorandom number generators.

Establishing the connection between the minimax grid matching problem and the wide
variety of seemingly unrelated problems just mentioned has, of course, required a great deal
of work by many researchers. Hence, it is not possible to provide detailed explanations for
all of the connections in this paper. Instead, we include only the relevant definitions and
statements of results for each connection, referring the interested reader to other sources
for details.

The remainder of the paper is divided into six sections. In Section 2, we describe some
related combinatorial problems. In particular, we discuss the maximum up-right matching
problem and several 2-dimensional discrepancy problems. In Section 3, we discuss the
application of the minimax grid matching problem to bin packing, dynamic allocation,
wafer-scale integration and testing pseudorandom number generators. The proof of the
O(log 3 / 4 N) upper bound for minimax grid matching is contained in Section 4. We conclude
with some remarks, acknowledgements and references in Sections 5-7.

2. Related Combinatorial Problems

In this section, we discuss several combinatorial problems that are closely related to the
minimax grid matching problem. These problems are interesting in their own right, but are
included here mostly for their role in the applications described in Section 3 and the proof
contained in Section 4. We commence with the maximum up-right matching problem in
Section 2.1 and finish with a discussion of two-dimensional discrepancy problems in Section
2.2.

2.1. The Maximum Up-Right Matching Problem

Consider a square with area N in the plane that contains N random pluses and N
random minuses located independently and randomly according to the uniform distribution

* on the square. Given a set of N pluses and N minuses P±, an up-right matching on P,
is a one-to-one matching of pluses to minuses such that every plus is either unmatched or
is matched to a single minus that lies above and to the right of the plus. A maximum up-
right matching for P: is an up-right matching which minimizes the number of unmatched
points. For example, Figure 4 illustrates two up-right matchings. One is maximum, the
other is not.

Let U(P t ) denote the number of unmatched pluses in a maximum up-right matching
for P'. For example, U(P±) = 1 for the collection of pluses and minuses shown in Figure
4. As with minimax grid matching, the algorithmic problems of determining U(P ± ) and
finding a maximum up-right matching for a particular collection of pluses and minuses are

4
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Figure 4: Two up-right matchings. Only the matching in (b) is maximum.

, elementary and not of interest here. Rather, we are interested in determining the expected"

and/or high probability values of U(P ± ) for random P±.

It is not difficult to show that the expected value of U(P ± ) is fl(vr/N7). Simply consider
the pluses and minuses that lie in the upper half of the square. Since pluses in the upper
half of the square can only be matched to minuses in the upper half of the square, the
number of upper-half pluses less the number of upper half minuses is always a lower bound
on the number of unmatched pluses in a maximum up-right matching. The numbers of
upper-half pluses and minuses are governed by simple binomial distributions with mean
N/2 and variance N/4. Hence, the number of upper-half pluses will exceed the number of
upper-half minuses by at least fl(VNM) with some constant positive probability. Thus, the
expected value of U(P ± ) is at least f(v/-N).

Karp, Luby and Marchetti-Spaccamela [10] were the first to explicitly define the max-
imum up-right matching problem (i.e., the problem of determining the expected value of
U(P ± ) ). By applying Hall's Theorem [9] and analyzing the dual problem, they showed
that U(P ± ) <_ O(V-NlogN) with high probability. By applying an elegant argument of
Ajtai, Koml6s and Tusna.dy [1], they also showed that U(P ± ) > fl(v/Nlog N) with high

- probability.

The resulting 0(V/1-o"N) gap in the bounds remained until Shor [21, 22] proved that
U(P ± ) > Fn(v/'N Jog 3/ N) with very high probability. Not surprisingly, this result combined
with the O(vr-logN) upper bound led to the conjecture that U(P + ) = e(VNlogN)
with high probability. As it turns out, however, this is not the case. Instead, it is the
fl(/~' log s/ N) lower bound that is correct. In fact, we prove in this paper that U(P ± ) =

* e(V/-/log3 / N) with very high probability.
Judging from the similarity between the claimed bounds for the minimax grid matching

" problem and the maximum up-right matching problem, it should not be surprising that
the two problems are closely related. In fact, any very high probability upper bound on
L(P) can be transformed into a very high probability upper bound for U(P ± ) by simply
multiplying by E(v'N). To see this, consider an up-right matching problem with N random

* pluses P- and N random minuses P-. (Iere P± =P+ u P-.) Let d(N) be a-very high

5 "o,
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probability upper bound on L(P). Then, with very high probability, L(P + ) < d(N) and
L(P - ) < d(N). In other words, the pluses and minuses can each be matched to N regularly .

spaced grid points so that each grid point is matched to a plus and a minus that are within
distance at most d(N). Next form a matching on P' by matching the plus identified
with grid point (i,j) to the minus identified with grid point (i + 2d(N),j + 2d(N)) for

{(i,j)I1 < i < VN- 2d(N), 1 < j _ vN- 2d(N)}. For example, see Figure 5.

(i + 2d(N),j + 2d(N))

length < d(N)

Figure 5: The matching of a plus to a minus via association with grid points. Since the

solid matching lines have distance at most d(N), the minus is above and to the right of the
plus.

From inspection of Figure 5, it is clear that the procedure just described forms an up-
right matching. The only pluses not matched by the procedure are those identified with
grid points in the topmost 2d(N) rows and the rightmost 2d(N) columns. As there are less
than 4d(N)vN such points, we can conclude that U(P ± ) !_ O(v/Nd(N)) with very high

probability. Hence the claimed very high probability O(v log314N) bound for U(P ± )

immediately follows from the very high probability O(log3 " N) bound for L(P) proved in
Section 4.

It is conceivable that a symmetric condition is also true: namely, that a very high
probability upper bound for U(P ± ) can be easily transformed into a very high probability
upper bound for L(P). We doubt that this is the case, however, since the minimax grid
matching problem appears (at least to us) to be fundamentally harder and more general
than the maximum up-right matching problem*. Nevertheless, the upper bound for
U(P ± ) obtained from L(P) is tight up to constant factors.

2.2. Two-Dimensional Discrepancy Problems

Discrepancy problems have a long and rich history in mathematics and statistics [6, 19,
23, 251. In fact, much of probability theory and mathematical statistics involves estimating

This is true in higher dimensions. In d-dimensional space, for d > 3, Karp et at. J1O prove that for
up-right matching, the log factor disappears and U(P±) = (NI - 1/i); whereas there is an easy lower

bound of fl(log'/ N) for d-dimensional ninimax grid matching. Hence the relationship between u(P 1 )
and L(P) breaks down in higher dimensions.

6
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the likelihood of certain discrepancies (or deviations from the norm) occurring in random
data. As a familiar example, consider an unbiased random walk of length N. It is a well-
known consequence of the reflection principal that the largest deviation from the origin
during the walk is expected to be E(V-). Hence, the largest "swing" observed in any
subwalk of a walk of length N is also expected to be E(VN).

This basic result has many consequences, and can be stated more generally as an
example of a 1-dimensional discrepancy problem. For example, consider a fixed interval of
length N that contains N random points selected according to independent and identical
uniform distributions. Define the discrepancy of any subinterval to be the absolute value
of the difference between the expected number of points contained in the interval (i.e., the
length of the interval) and the actual number of points contained in the interval. Using
the reflection principle, it is not difficult to show that the expected maximum discrepancy
over all subintervals is W(V7N). Moreover, with high probability every subinterval has
discrepancy at most O(v"LV1YN + log N), where L is the length of the subinterval.

In this paper, we are interested in two-dimensional generalizations of the preceding
one-dimensional results on intervals. Several different generalizations have been studied,
depending on how the subintervals are generalized. For example, consider a square with
area N that contains N random points generated according to independent and identical
uniform distributions. For any region R of the square, define the discrepancy of the region
A(R) to be the absolute value of the difference between the expected number of points
contained in R (i.e., the area of R) and the actual, number of points in R. In a classic paper,
Kiefer [111 showed that the expected maximum discrepancy of any oriented rectangle is
E"(v-N) for fixed N. Generalizing the law of the iterated logarithm, he also showed that
the limsup of the maximum discrepancy of any oriented rectangle over all N --* oo is
E(vfylog log N) with probability 1 - o(1). These results were later extended by Philipp
1161 who proved the same bounds for arbitrary convex regions, and by Leighton (121 who
showed that with high probability, every convex region has discrepancy O(vA/ilog N +
log N) where A is the area of the region.

Of greatest interest in this paper, however, is the work on maximum discrepancies of
up-right regions (also known as lower layers) in the square. Up-right regions are defined
by monotone decreasing curves. For example, Figure 6 illustrates a rectilinear up-right
region with N = 8, area 2 and discrepancy 1.

By applying Hall's Matching Theorem in the usual way, it is not difficult to see that the
up-right discrepancy problem is closely related to the up-right matching problem. More
precisely, if we consider a square with area N that contains N random pluses P+ and N
random minuses P-, and we define A±(R) to be the number of pluses in R less the number
of minuses in R, then the maximum value of A±(R) over all up-right regions is precisely
the number of unmatched pluses in a maximum up-right matching for P± = P+ u P-.
For random distributions, the maximum values of A+(R) and A(R) are within constant
factors of each other with very high probability, so we can conclude from the bounds on
U(P ± ) cited in Section 1 that the maximum value of A(R) over all up-right regions is
e(V log4 N) with very high probability.

Asymptotically characterizing the expected maximum value of A(R) over all up-right
. .'. regions has been an open problem in mathematical statistics for some time. Perhaps Blum

131 was the first to study the problem, proving a o(N) upper bound in 1955. This was later

7
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Figure 6: An up-right region with N = 8, area 8 and discrepancy 1.

improved to O(N 3/') by Steele [231 in 1977 and then to O(v/-log N(log log N)') for some
constant a by Philipp [17]. The first nontrivial lower bound was proved by Dudley [7] in
1982. He showed that the expected maximum value of A(R) for all up-right regions is at
least fl(v-NV7 1N/(loglogN)+) for any constant E > 0. Karp, Luby and Marchetti-
Spaccamela [101 were the first to bring the problem into the computer science community,
proving an upper bound of O(v7-Nlog N) and (using an elegant argument of Ajtai, Koml6s
and Tusnidy [11) a lower bound of fl(/lV--N). The O(VNlogN) upper bound also
follows directly from prior work of Leighton and Leiserson [13] and Ajtai, Koml6s and
Tusnidy [1]. The lower bound was later improved to fl('N/logs/4 N) by Shor [21, 22],
who independently developed a method similar to that followed by Dudley. The results in
this paper provide final resolution to the problem by establishing a very high probability
O(VfN log 3 / 4 N) upper bound on the maximum discrepany of any up-right region.

A priori, it is not clear why we should restrict ourselves to either convex or up-right
regions of the square when generalizing the 1-dimensional discrepancy problem. For ex-
ample, why not consider any simply connected region? (A region is said to be simply
connected if it is connected and contains no holes.) The answer, of course, is that we can
always construct a simply connected region that contains all N points, but that has area
arbitrarily close to zero. Hence, the worst possible discrepancy is always achieved.

Not all is lost, however, since the discrepancy of a simply connected region can be
bounded in terms of its perimeter. In fact, we will prove in Section 4 that with very high
probability, the discrepancy of every simply connected region is at most O(plog 14N +
log3 /2 N), where p is the perimeter of the region. Note that this result naturally generalizes
the bound on discrepancies of up-right regions since p = O(VW) for any up-right region.
More importantly, however, the result will be sufficient to prove the O(log3 / 4 N) upper
bound for minimax grid matching. The proof of this fact is not difficult and again uses
Hall's Theorem. The details are deferred until Section 4.

Although the topic is not of direct concern in this paper, two-dimensional discrepancy
problems have also been studied in a worst-case setting. The most notable result in this
area is due to Schmidt [20] who resolved a decades old open question by proving that

8
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no matter how N points are arranged in a square of area N, there is always an oriented ..
rectangle in the square which contains fl(log N) fewer or fl(log N) more points than its
area. In other words, there is always an oriented rectangle with discrepancy fl(log N).
Constructions which achieve a maximum discrepancy of Q(logN) for this problem were
known long ago [14, 24] and have recently been rediscovered in the computer science
literature [8, 151. Curiously, it is still not known how to prove either the "Q (log N) fewer"
or the "fl(log N) more" result individually. Even more startling is the fact that there is
always an oriented right triangle in the square with discrepancy O(N 1 /4) [191!

3. Applications

In this section, we briefly describe the applications of our work to problems involving
bin packing, dynamic allocation, wafer-scale integration, and testing pseudorandom num-
ber generators. The applications range widely in difficulty, and some are quite elegant.
Due to space limitations, however, we will mostly just refer the reader to relevant papers
in the literature.

3.1. Wafer-Scale Integration

The minimax grid matching problem was first studied in the context of wafer-scale
integration of two-dimensional systolic arrays [13]. Only later was its association with
up-right matching noticed.

When constructing two-dimensional arrays on a single wafer, the designer is typically
presented with a regular vN x VN array of chip-size cells, some fraction of which are

* functional. The task is to connect the functional cells into a smaller square array in a way
that minimizes the length of the longest wire needed to connect adjacent cells in the array.
For example, Figure 7 illustrates the connection of a 3 x 3 array of functional cells from a
4 x 4 array containing 9 functional cells.

') <- -Defective
cell

Figure 7. Connection of a 3 x 3 array of functional cells.

-. Unfortunately, the designer's task is NP-hard in geperal, Htowever, the impact of this
difficulty is mitigated by two practical considerations. First, the defective cells tend to

•. .. (. , .
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be located randomly. Second, an algorithm need only work well for most (not all) wafers.
Hence, an algorithm which works with high probability for randomly located faults is very
acceptable in practice.

The minimax grid matching problem suggests exactly such an algorithm. First match
the functioning cells one-to-one with an imaginary regularly spaced grid of the same car-
dinality in a way that minimizes the longest matching length. By the work in this paper,
this length will be O(log3 / ' N) with very high probability.

The one-to-one association of functioning cells with imaginary grid points assigns a
label (i,j) to each functioning cell. It remains only to hook up cells whose labels differ
by one in precisely one coordinate. Since the distance between any two adjacent cells (say
(i,j) and (i,j + 1), for example) is at most the distance between (,j) and its matching grid
point (this is O(log31/ N) with very high probability) plus the distance between (i,j + 1)
and its matching grid point (also O(log 3 1 4 N) with very high probability) plus the distance
between the two matching grid points (constant), every wire will have length O(log3 / 4 N)
with very high probability.

Of course, this analysis assumes nearly widthless wires, but for some applications this
is reasonable. Previously, the best upper bound proved for this problem was O(logN) by
Leighton and Leiserson [13]. The best lower bound known remains the trivial bound of

3.2. Two-Dimensional Bin Packing

The maximum up-right matching problem was first defined in the context of two-
dimensional bin packing [10]. In fact, the algorithm proposed by Karp, Luby and Marchetti-
Spaccamela for two-dimensional bin packing specifically uses the maximum up-right match-
ing algorithm as a subroutine. In what follows, we briefly describe the problem and the
results. We refer the interested reader to [101 for a description of the algorithm and the
details of the analysis.

Given a collection of N items from [0, 11 x [0, 1], the two-dimensional bin packing
problem is to pack the N items into the minimum possible number of unit-square bins.
Of course, the two-dimensional bin packing problem is NP-complete. However, when
the N items are chosen independently and uniformly from [0, 1] x [0, 1], the Karp-Luby-
NMarchetti-Spaccamela algorithm uses N + O(W) bins and wastes G(W) space with very
high probability, where W = e(v-N log 314 N) is the anticipated number of unmatched
pluses in a random maximum up-right matching problem. This compares favorably with
the fl(-N) lower bound on expected wasted space for any two-dimensional bin packing
algorithm. Whether or not there is an algorithm which achieves o(v-N log 3/ 4 N) expected
wasted space remains unknown.

3.3. One-Dimensional Bin Packing

Somewhat surprisingly, the apparently two-dimensional up-right matching problem
also arises in the context of one-dimensional bin packing. In particular, Shor [21, 22] showed
that the-space wasted by the Best Fit bin packing heuristic when packing N items uniformly
selected from [0,1] is O(11) with high probability, where again W 0( /Nlog 3 /4 N) is

10
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the anticipated number of unmatched pluses in a random maximum up-right matching
problem. Moreover, the same upper bound holds when the items are selected from any
distribution on [0,11 that is symmetric about 1/2.

The Best Fit algorithm is one of the most common on-line algorithms used in practice.
The algorithm packs each item as it "arrives" (never looking ahead at subsequent items) in
the fullest bin into which it fits. Although better off-line algorithms are known (First Fit

' Decreasing achieves the optimal bound of 0(v-N) expected wasted space [2]), no better on-
line algorithm is known. In fact, Shor [21, 221 used a related matching problem to prove
an fl(v1-NW/I-o-N) lower bound on the expected wasted space of any on-line algorithm,
assuming that the number of items N is not known in advance.

3.4 Dynamic Allocation

The up-right matching problem also arises in the context of dynamic algorithms for
file storage. In particular, the Coffman-Leighton [41 Best-Fit-Aligned (BFA) algorithm for
dynamic allocation wastes 1(W) space with very high probability where W is the expected
number of unmatched pluses in an N-point random up-right matching problem, when files
arrive and depart according to a Poisson process where N is the expected number of files
in storage at any point in time. Since the amount of used (i.e., occupied) space in storage
at any time is easily bounded, this means that the capacity of the storage device can be
predetermined so as to almost never waste more than O(V/N log 3 1 4 N) space and so as to
almost never need compaction. Moreover, the results hold for any distribution of file sizes
in [0,1]. These results are much better than those for the worst-case algorithms used in

- practice, which commonly waste O(N) space and spend a constant fraction of their time
in amortized compaction.

Although, we do not have room to describe the BFA algorithm in detail here, we can
mention a simpler balls and boxes problem with related performance. Consider an infinite
collection of boxes in a line 1,2,3,.... Assume initially that precisely the first N boxes
are filled. At each step, remove one of the balls at random, and then try to insert a new
ball into one of the first N boxes (chosen at random). Boxes can contain at most one ball
each, so if we are unable to insert the new ball into its desired box, then insert the ball into
the leftmost empty box to the right of the originally desired box. Continue this process
indefinitely.

It is clear that the system just described always contains exactly N balls, but the
position of the rightmost ball will vary with time. The question of interest in dynamic
allocation involves the expected location of the rightmost ball. This is, of course, identical
to N plus the number of empty boxes before the rightmost ball (i.e., the wasted space).
By a rather complicated reduction to maximum up-right matching, Coffman and Leighton
[4] showed that the rightmost position at any time T > N log N is N + (VN log /, N)
with very high probability. Without up-right matching to rely upon, this result might well
have been impossible to obtain.

* 3.5 Testing Pseudorandom Number Generators

All of the a, plications discussed thus far are directly tied to one of the matching
problems. The corresponding discrepancy problems also have applications, but most are
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to problems in mathematical statistics (e.g., see 123, 261) and are of limited interest to
computer scientists. There is one potential application that could be of interest, however:
using the minimax grid matching problem to test pseudorandom number generators. As %-' ,

an example, consider the plot of "random numbers" from the IBM PC random number -h"

generator shown in Figure 8.
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Figure 8: Plot of 2000 random pairs (z,,, x+1 ), (z,+4 ,z,+5), ... generated from the IBMI
PC Random Number Generator with IBM PC Basic. (Taken from /18].)

The points in Figure 8 (which is copied from [18]) were obtained by taking consecutive .

pairs of "random numbers" and using them as x and y coordinates. In this case, it is
readily apparent that the data are not random. One way of detecting this formally is
to observe that there are simply connected regions with area A and perimeter p that

contain far more than A + e(p log s/4 N) points. (Just draw the boundary around one of

the diagonal clusters.) Hence, by the arguments of Sections 2.2 and 4, the minimax grid

matching length for this set of points would be far in excess of 0(log3 / ' N). Hence, we
would have formal grounds for deciding that the IBM PC random number generator is
faulty.

There are several good reasons to use the minimax grid matching length as a barom-
eter for randomness. First, it is a polynomial time test which in some sense is doing an
exponential amount of work. Because of Hall's Theorem, we know that if the minimax
matching length is d, then every simply connected region in the square (of which there are
more than an exponential number) is verified to contain about the right number of random

points (i.e., between A - E(pd) and A + O(pd)). Hence large discrepancies in odd shaped
regions will be readily detected, even if they are not easily characterizable or readily appar-
ent to the naked eye. Second, the test will also identify generators that are "too regular."
If the numbers are too regular, they will form a nearly perfect grid resulting in a minimax
matching length that is too small. Third, the distribution of the minimax matching length
is very sharply peaked at O(log3 14 N). The probability of deviating from the peak by even

a constant factor is vanishingly (more than polynomially) small. Hence small deviations
from the peak would provide high confidence that the pseudorandom number generator is
not random.

12
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F .The major drawback to using the minimax matching length as a statistical test is that

we have not been able to completely characterize its distribution. This would have to be
*-:.. done in order for the test to be usable for fixed values of N. In the mean time, the test

can only be used as a well-motivated heuristic. In fact, we are currently doing just that.
Some students at MIT are in the process of coding several tests and pseudorandom number
generators of various types to see how they compare.

The idea of using a matching problem as a test for a pseudorandom number generator
is not completely new. The same idea (but for a different problem) motivated the work
of Ajtai, Koml6s and Tusnidy [1]. Unfortunately, they also were unable to completely
characterize the distribution around the peak. More generally, related methods can be

found in the literature on spectral and Fourier tests [51.

4. Proofs

In this section, we prove that the minimax grid matching length L(P) for N random
points P is O(log3/ 4 N) with very high probability. The section is divided into four subsec-
tions. In Section 4.1, we formally convert the minimax grid matching problem into a dual
discrepancy problem with a straightforward application of Hall's Theorem. We prove the
necessary bounds for the discrepancy problem in Section 4.3. Section 4.2 provides some
intuition and motivation for the rather complicated proof in Section 4.3, and gives some

. insight into why the eventual answer is O(log3 /' N) instead of E(V1/io ) or 9(log N). In
Section 4.4, we extend the result of Section 4.3 to arbitrary regions in the plane. The
result is not needed for the rest of the paper, but is mathematically more interesting and
natural.

4.1 Conversion to the Dual Discrepancy Problem

In the next few subsections, we will restrict our attention to simply connected regions
with a special rectilinear form. In particular, we define a partition r of the square with
area N into - - N subsquares, each with side length log314 N. In Section 4.3, we will prove
that there is a constant c > 0 such that with very high probability, the discrepancy of every
simply connected region whose boundary lies along the edges of r is at most cp log 3 /4 N
where p is the perimeter of the region. As a consequence, we can conclude that with very
high probability, the discrepancy of every region (not necessarily connected or simple)
whose boundary lies along the edges of F is at most cplog s3 4 N where p is the perimeter
of the region. (This corollary is easily proved by decomposing an arbitrary region into the
sum and difference of simply connected regions.) In this subsection, we show how to use
this result to prove that the minimax grid matching length L(P) for N random points P
is at most d = O(log3 /4 N) with very high probability.

By Hall's Theorem 191, it is sufficient to show that for every set 4 C P with z random
points, there are at least x grid points within distance d of A. To do this, we define a
coarser partition I" of the square into ! subsquares with side length 4 where (for now)
d = 8c log al ' N. For any subset A C P, let the region R consist of all the subsquares in r'
containing a point of A. Let R' be the slightly larger region formed from R by adding an
isosceles right triangle with hypotenuse 4 to every ,-length segment along the perimeter of
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R. For example, see Figure 9. (For now, we overlook the special case when the boundary
of R coincides with the boundary of the overall square.)

... ,..... Ad ed
4.'

%.

triangleS

Figure 9: The extension of R to R'.

By construction, every grid point of R' is within distance d of some point in A. Hence
it remains only to show that the number of grid points in R' is at least as large as the
number of random points in A. This can be accomplished by observing that the number
of grid points in R' is at least the area of R' which is

Per(R) 1 d\ 2

Area(R) + d/2 "4 k 2

= Area(R) + Per(R)c log3/ ' N

whereas
1.A1 <- Area(R) + A(R)

< Area(R) + Per(R)c log- / 4 N

This completes the proof. (Accounting for the case when the boundary of R coincides
with the boundary of the square only multiplies d by a constant factor.)

4.2 Decomposition Into Triangles - The Intuition

In Section 4.3, we will prove that with very high probability, every simply connected
region whose boundary lies along the edges of F has discrepancy at most O(p log 3/4 N)
where p is the perimeter of the region. In what follows we provide some intuition for the
result by proving a much simpler result with the same loge/ n bound. This simpler result
deals with the decomposition of a polygonal region into triangles and is interesting in its
own right. The result does not imply the desired discrepancy bound, but it does give some
of the basic ideas behind it. In Section 4.3, these ideas are obscured by technical details.
Theorem 1: Any polygonal region R with n vertices and perimeter p can be decomposed .-

into a sum and difference of triangles T such that , Area(Tj) O(plog3 1' n).

14



Proof: The algorithm we use to decompose the region into a sum and difference of triangles
is simple. At each step, we reduce the number of vertices of the polygon by half by cutting
off n/2 consecutive triangles. (See Figure 10.) In particular, we cut off n/2 triangles
formed by pairs of adjacent sides. We concentrate on what happens when we remove the
jth triangle, which is formed, say, by vertices v,-1 , v. and vi+.. Let the distance between
v,- and vi+1 be di, and let the two edges v,_ 1 vi and v,v,+ 1 have lengths e, and ei+1 . Let
ci = e1 + e,+i. In removing the triangle v,- 1 vivi+1 , we remove two edges totalling length
ci, and add an edge of length di. Thus, we reduce the perimeter by 6j= cj - di .

VO V

vs yI .

Figure 10: Removing four triangles.

We must show that this algorithm produces a decomposition into triangles such that

* i, Area(T;) O(plog3 /4 n). Removing the jth triangle reduces the perimeter by 6i =

.i - di. The area of this triangle is at most di  c - df, since this area is maximized whenS=e+

We therefore get

Area(T) < 4d (c - d)1/

- 'd,' 2(c, + dl)/( - dj)/
-<qcs1 /4

< c 31 3

We repeat this step of cutting off half the vertices until we reduce the number of sides
to 2, and thus have no area left. At each step the total sum of the ci's is at most the
perimeter p, so since there are log n steps, we have -2 p log n. Since 63 was the
change in the perimeter produced by removing the jth triangle, n-2 6, p. Thus, we
have

3-2 n- 3/ 1/

< 2p log3 / 4 n.

The second step is a special case of H61der's inequality. I 2
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The expected discrepancy of a triangle T is G(/Area(T)). If we could assume that
the average discrepancy of a triangle in the decomposition of the polygonal region R was .
this expected discrepancy, then by Theorem 1 the total discrepancy of the region R would " "
be O(p log s / 4 n). Proving this for a general class of regions R is the most difficult part of
the paper and is done in Section 4.3.

The decomposition used in the proof of Theorem I is basically the one that we will use
for the general result. We will bound, with very high probability, the total discrepancy of
all the n/2' triangles removed at the kth stage. We do this by counting the number of
possible sets of triangles that could be removed at the kth stage.

Although we have not investigated the matter formally, the bound in Theorem I is
almost surely tight in the worst case.

4.3 Formally Bounding the Discrepancy - The Proof

In this section, we prove the following central result.

Theorem 2: Consider a set of N points uniformly and independently distributed in the
/7-Nx vWN square, and define r to be a grid of squares with edge length log3 / ' N. Then there

is a constant c such that with probability at least 1 - N - 1'9 2 N, every simply connected
region R whose boundary follows F has discrepancy A(R) _< cPer(R) log 3/ 4 N.

The proof is divided into two sections, one deterministic and one probabilistic. In the
deterministic section, we show that the discrepancy of any R satisfying the hypothesis can
be bounded by the sum of the discrepancies of 2 log p disjoint regions, most of which are
drawn from "small enough" classes of "small enough" regions. In the probabilistic part of -- 1
the proof, we establish very high probability bounds on the discrepancies of the regions in
the classes, thus obtaining an upper bound on the discrepancy of any R.

4.3.1 The Deterministic Part of the Proof

The deterministic part of the proof of Theorem 2 consists of showing that there are
collections of regions )i,~,p of the v'N x x/N square and a constant co independent of N
such that:

1) the area of every region in Pi,,,p is at most 2 ip2 / ,

2) the number of regions in Qi,,.p is at most N 2 (s log N)2"' , and

3) for any p and any simply connected region R with boundary on r and perimeter p in
the VN x square, there exist real numbers sl,..., sm, and regions Dl,..., D,
and D*,..., D such that

3a) Di, D! E V,,,,p for 1 < i < m,

3b) A(R) < j ((A(D,) + A(D*)), and

3c) S,+-- +SM<CO.

The P,,.p are defined for values of i that are integers in the range [1, m], where m =

log p, values of s that are integer multiples of 1/log N in the range [1/ log N, NI, and values
of p that are integer multiples of log3

/ 4 N in the range [log 3 / 4 N, NJ. In fact, we will assume
without loss of generality that p is a power-of-two multiple of log3 / ' N.

16
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The regions in a particular P,.,,p need not be connected or simple, but they will consist
*of the sum and difference of easily described polygons. Very roughly speaking, the regions

in Pi,,p will correspond to the union of triangles removed in the (logn - i)th halving
operation described in Section 4.2, where s is related to the total area of the removed
triangles and p is the perimeter of the original region being decomposed. The precise
characterization of the V,,0p is fairly difficult, and will be described as we go along.

The {Di} and {D?} for a region R are derived from a sequence of approximations
Ri..., Rm+, to R where R, = 0 and Rm+i = R. To construct the sequence, we use two
different sequences of piecewise linear closed curves. The first sequence has vertices lying
on the boundary of R. We call the ith curve of this kind A,. The Ai are then approximated
further by closed curves Bi with vertices on a grid Gi. If Bi is a simple closed curve, then
R, is its interior. Although we begin with a simple closed curve, neither the Ai nor the
Bi approximations are necessarily simple closed curves, which causes further problems,
forcing us to define a region "enclosed" by the curve B,. This "enclosed" region is R,,
which is not necessarily connected, even though R is connected.

To obtain the approximation Ai, we mark 2' points at equal distances along the bound-
ary of R. We call these points ajo, ail, ... , ai,2 _... The starting point a,0 = a0 is the same
for all A, and is chosen to be a vertex of r. We then join these points in order by edges.
Half the vertices of Ai+1 are also vertices of Ai, specifically, ai = ai+1,23 . We let the length
of the edge between ai,_ 1 and ai be eii.

The curve Bi is obtained by approximating the curve A, with points on a grid Gi. We
let the jth vertex bi, of Bi be the nearest grid point to the jth vertex a,, of A,. If several
grid points are equidistant to some vertex, we break the tie arbitrarily.

The grid G, has points spaced evenly at distance g, = p/(2'\/T ). The grid G,, is
a refinement of Gi, so a fourth of the points of Gi+1 are also points of G,. We denote the
edge length of Gi by gi = gl/2'- '.

We have now produced the curve Bi. If it is a simple closed curve, then the area inside
it is our ith approximation Ri to the region R. Otherwise, we must do some more work.
If an area is enclosed by Bi twice or more (i.e., has winding number > 2), we still wish to
count each point inside it at most once when calculating the discrepancy. We do this in
the following manner. If the winding number of a point is positive with respect to B,, we
include it in our region. If the winding number is zero or negative, we do not include it.
This gives the region R, which we use as our approximation to the region R.

By the assumption that p be a power-of-two multiple of log3 / 4 N, we know that Am+i
coincides with the boundary of R. Since the vertices of F are a subset of the grid points in
Gm,, this means that Bm+i is identical to the boundary of R and thus R,+, = R. Since
B, contains only 2 vertices, R, = 0. Hence, we have constructed the desired sequence of
approximations to R. The {D,} and {D,} are now easily defined for 1 < i < m as follows:

= R,+/R, and

where the notation S1 /S 2 is used to denote the set of points contained in S but not in S2 .

It is readily observed that

A (S2 ) A A(S,) + A(S 1 /S 2 ) + A(S 2/SI)

17
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for any regions S and S2. Thus for any i,

A()- A(p) A(D,) + A(D,).
i Summing over 1 < i < m and using R'*+i = R and R1 = 0, we find thati

,"A(R) < [(D)+A(D)J, ,

Each Di and D? is contained in the union of "triangles" removed from Bi+1 to produce
Bi. That is because any point which has a positive winding number with respect to B+1 but
not with respect to B must be contained in one of the triangle-like objects removed from
Bi+1 to form Bi. (The objects removed from Ai+1 to form Ai are triangles, albeit possibly
overlapping, but slight deformations of this basic structure are possible when passing to
Bi+1 and Bi because of the coarseness of the approximation.) We will eventually use this
fact to show that the areas of the Di's and D!'s are small. Before doing this, however, we
must classify Di and D* as elements of Po,5 , for some s and p. The choice of p is easy; it is
simply the perimeter of the original region R. Since the boundary of R follows 1, p must
be an integer multiple of log 3 14 N in the range [log 3/4 N, NJ, as needed for the definition of
Pi,,. In fact, we can increase p to a power-of-two multiple of log3 / ' N by appending to R
a zero-area region with sufficiently large perimeter.

The selection of s = si is much more complicated and depends on the triangle decom-
position of R. In particular, we will need to examine the triangles Ti that are removed
from Ai+ 1 to form Ai. Specifically, we define Ti, to be the triangle with vertices aij. 1 , ai,
and ai+, 23j.-. Recall that eii is defined to be the distance between aiji and aij and define

The value of qi is a normalized, dimensionless parameter that is closely related to the
perimeter of Ai as well as the area of R+ 1/R,. It is hard to provide better motivation for
this definition except to say that it has a sufficiently strong form so that the inequalities
will all work out right later. Unfortunately, the same cannot be said of more natural
definitions. The following fact, in particular, will prove useful later.

Fact 1: % <qi+l 1forO< < m -1.
Proof: To show that q* 1, we observe that the 2'* edges of Am each have length at
most p/2 ' . Thus

qm < 2 2m (p/2")= 1.

P
To show that qi qi+ 1, we apply the triangle inequality to Ti to show that e,, _

i+ 1.2i - e1++ 2,). Summing over I < j < 2' yields that

2'2' 2 e~ 2-- < 2 i+ l'i -
,j=1 j=1
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and thus that 2'
2' 2'+1 2'+'

-. e? _<_ E e'
2" "" - 2 i+l,j

P j=1 P p

which means that q :_ qi+1 . I
It is also worthwhile defining

2%

ki = 2(ei+1,2 1-1 + e,+1,21 )-

which is proportional to the contribution of triangle T . to qi, and

ri = qi+l - qi

which is the difference in q for Ai+ 1 and Ai. By Fact 1, ri > 0 for 0 < I < m - 1 and

3r,=q.

Also note that
2'

Skii = p2 ri/2'.

Lastly, we define
ri-1 ri-2 r,

- 2 4
and set si to be the smallest integer multiple of 1/log N that is greater than cr' +,3/log N
where a and P are sufficiently large constants to be determined later. (It will turn out
that a = 9eir and 1 = 9e(1 + 167r) are sufficient where e = 2.718 .... ) The class Pi,,,p is then
defined to be the set of all Di and D* resulting from a region R with perimeter p for which
3 = si. It now remains to prove the hypotheses stated at the beginning of this section. In
particular, we still must show that:

1) Area(D) and Area(D") are at most 2 -/

2) the number of Di or D! for which - < s< for some integer t is at mostlogN - logN

N 2 t2 +' , and

3) si + --- + s, < co where co is a constant independent of N, p and R.
We start by showing that the areas of Di and D* are at most 2'p 2 vjf. From before,

we know that Di and D? are contained in the union of the triangle-like objects removed
from Bj+1 to form B i . In particular, define Ei - U i T,, and define F to be the set of
all points within distance v/Fg+l of a point in Ei. Then Di, D! Fi and it is sufficient
to show Area(F) _ 2-'pijV. Since Ei can be bounded with two closed curves each with
length at most p, it is easily seen that

Area(Fi) :_ Area(E,) + 2V/gi 1 p + 27rg2.

The area of E is bounded by the sum of the areas of the triangles Tij it contains.
The area of 7,, in turn, is at most times the altitude of the triangle. A simple
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geometric argument that the altitude is at most i V/-" where, as before,
2(e?+ 21-, + 1 +1,2j)- e?," Since eii < p/2', this means that Area(T,) pk,,/2'+2 and .-.-

thus that
21% P

We can now conclude that

AArea(e) ( + 2V2gi+l + 2<rg_
2i+2 +

<_2 - < P 2-i2 (V' ++
-4 plogN /21+log N

< ' 2 V/-

*provided only that c> and 1> ~.(Recall that g, p/2'VilogN and p log3 /4 N since
the boundary of R coincides with r.)

<~v s,+ fo some inee

We next show that the number of Di and D* for which _ s -< for some integer I

t is at most t2+'. This will be reasoned with a Kolmogorov complexity type of argument.
In particular, we will associate every set of sequential approximations {Bi......, B,+l} for
which si with a unique triple of lists. The first list will consist of two integers

from [1, NI. The second list will consist of 2'+' integers drawn from [1,91. The third list
will consist of 2'+ ' integers that sum to at most E2i+'(t - 1 + 16a), where a and 1 are
the constants in the definition of s, = ar', + 3/log N. This will be sufficient to prove the
desired result since the number of such triples of lists is at most

2'+ 1.6a)
N(9)2''(2+( 2+1)

= N2+' (!21+I(t -)3 + 16a + 9

< N2(9)2' '[ (t- 13 + 16a + )2+
Or 16 , -

'N2 [!i(t - 3+ 16a +

< N2t2'+

provided that a > 9eir and 3 _> 16a+ > _ 9e(1 + 167r). Notice that we used the well-known .

". inequality ( < in the third step of the calculation.
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We start describing the association of {B 1 , Bi+1} with lists by considering the ways
that B, can be extended to form Bi++. First we note that for every vertex bij of B,, the
corresponding vertex bi+ 1,2j of Bi+1 is either the same point or an adjacent point of the
grid G,+1 . Hence there are 9 possible ways to refine the approximation of each vertex of
Bi in Bi,.

21 10 14

20 9 2 6 15

"- 13 5 1 3 11 ...

19 8 4 7 16

18 12 17

Figure 11: Numbering the grid points.

The remaining vertices of Bt 1 fall "between" consecutive vertices of B,. To specify the
* location of vertex bi+1, 2 i-1, we label all the grid points of Gj+1 , starting with the midpoint

of the edge bij 1 bij of Bi. The labelling is done in increasing order of distance from the
midpoint. For example, see Figure 11. Since the edges of Ai+ 1 have length at most p/2's ',
the next vertex of B+1 conceivably could be as far as p/2'+l away from this midpoint (up to
the O(gi+i) error induced by the approximation). This is essentially V/o N grid points of
G,+1 away. However, most points will be considerably closer, resulting in a much narrower
range of choices for most bi+ 1,2j-1. We will prove this using the following elementary fact
from geometry.

Fact 2: Let UV denote a line segment and let IUVI denote its length. The locus of points
1 determined by 2(IUWI + IVW 2) -IUVI 2 = k is a circle of radius ! about the
midpoint of UV.

By Fact 2 the point bi+ 1,2j_ 1 of Bi+1 will be in a circle of radius p =( k.1 + 3v 2gi+,)
centered on the midpoint of the edge bij-bij. (Recall that k i = 2(e'+,+, _l + e+ .1 2 ) - eip
and that B,+1 is an approximation to Ai+,.) Since we labelled the points in order of
increasing distance from the midpoint, the label lij of the point bi+ 1,2 _1 will be less than
the number of grid points in that circle. The number of grid points of G,+1 in a circle of
radius p is at most 7r(p + g,+,/V-2)2/g2+1. It follows that the label 1,i of the point b+ 1 2. 1_
satisfies the equation

Ii , !rk,,/g21 + 167r.
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Summing this inequality for li above, we get that
2i 2'

t,, <_ r/g, k,, + 1672' .- '
j=I i=1

< , k - '- + 167r2'

7r2'+lr, log N + 167r2 .

The preceding analysis indicates that the number of options for B,+1 given B, is limited
in a fundamental way by ri. In particular B,+l can be completely specified by B,, r,,
a list of 2' numbers from 11,91, and a list of 2' positive integers that sum to at most
7r2'+lri log N + 167r2'. Applying this process recursively, we find that {B 2,..., B,1} can
be completely specified by B1, r , a list of 2' + 2-' + ... + 2 < 2+' numbers from [1,91,
and a list of 2+ '  positive integers that sum to at most

(ir2 ' + 'r, log N + 16ir2") < rr'2' + ' log N + 167r2' + '.

If we restrict our attention to those {B,,...,B,+,} for which .qi < t/logN, then the
preceding sum is at most

si lo N r 2'+'

7r2'+' s1 logN- + 167r2'+' < (t - 3 + 167r).
cca a

Since B, contains only two points from G1, it can be completely specified by naming J I
the points. Since G, has at most N points, this is accomplished with a list of two numbers
from [1, NJ. Hence, every {B,..., Bi+,} for which si can be uniquely specified by

a triple of lists: one with two numbers from [1,N], one with 2'+' numbers from [1,91, and
one with 2' + ' integers that sum to at most E2'+'(t - 0 + 167r). As argued previously, this

means that the number of Di and D, for which si < is at most N2t2 + ' .
- og N

The last step in the deterministic part of the proof is to show that the maximum
of s, + -" + s, over all regions R is bounded by a constant independent of N and p.
Fortunately, this is easy to do since

i=1 - og + (ar'+ )f
-sj < +E 'r + log N

(f3-+1)m + On rj
log N + a 2j i -

('3+ 1) logp , MM r,
*+ alogN + ij2'

S3+ 1+aZE2r,
j=1

< 3 +l+2a
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which is a constant independent of N and p.

4.3.2 The Probabilistic Part of the Proof

The probabilistic part of the proof of Theorem 2 consists of bounding the discrepancies
of the regions in the 9 i,0p.. To do this, we will make use of the following simple fact, which
can be proved by an elementary counting argument.

Fact 3: Given a region D with area A in the I-N x vl square, the probability that
A(D) > q is at most

0 (e - : q'I
A ) for q < A and

0 (e"') for q > A,

where cl is a constant independent of D and N.
In order to bound the maximum discrepancy of a region in P,,,p with very high prob-

ability, it is sufficient to find a q such that

N 2 22 __ og(IogN),ciq2 /A < 0 o(2- Ig ,N) and

N_ oi (oN)e-ca9 < 0 (2- log3/ 2 N)

where A < 2-'p2 Vs. This is because the probability that a fixed region in D,,0,p has

discrepancy q or greater is O(e - 2/A) or O(e-I") depending on whether or not q < A,
and because ip,,,, only contains at most N22V±L l(hl~gN) regions.

l "Solving for q = q, in the first inequality we find that it is sufficient for

q =0 (VyA~lgl N + 2' log(s log N)I)

0 (v2 PS1 log 3/4 N + ps1/" log(s log N))

S0 (2-i/2p log3/' N + psI/4 log(s log N))

Solving for q = q2 in the second inequality, we find that it is sufficient for

q2 = O(log / 2N + 2'log(slogN))

= O(log3 / 2 N + 2' log log N).

Hence with very high probability, the maximum discrepancy of a region in 9,,,,p is at most

q = q, + q2

= (2-/ 2p log 3/ 4 N + pS/4 log(s log N) + log3 / 2 N + 2' log log N).

Since there are only a polynomial number of combinations of i, s and p, we can conclude
that the preceding bound holds with very high probability for all P,,,. From Section 4.3.1,
we know that for every region R,

. (R) < -(A(D) + A(D:))
s=2
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where Dj, D* E Di,,,,p for 1 < i < m and s, + + s, < co for some constant c0 . Thus,
with very high probability, the discrepancy of any region R whose boundary follows r is
at most

S[2-''p log3 1' N + ps1" log(si log N) + logS/2 N + 2' log logNI

where - " Si <C c0 .

We will consider the impact of each of the four terms in the sum individually. The first
term in the sum forms a geometric series that sums to O(plog3 /4 N). The second term in
the sum is the most important and lies at the heart of the proof. Because x1/4 log(x log N)

is convex in x, we know by Jensen's inequality that the value of i: ps /1 log(si log N) is
maximized when the si are all equal. Hence these terms sum to

O(log Np(co/ log N) 1 / ' log co) = O(plogs/ ' N).

The third term in the sum trivially adds up to O(logplogZ' 2 N) which is O(plog3 /'N)
provided that p > log 3 / 4 N log log N. The fourth term in the sum forms another geometric
series that converges to O(p log log N).

The preceding argument concludes the proof of Theorem 2 except in the special case
when p < log 3/4N log log N. For this case, we can forget Section 4.3.1 and apply Fact 3
directly.

Since such regions can contain at most (log log N) 2 interlinked square cells of r, there
are at most O(N2 ) such regions. Hence, with very high probability, the maximum discrep-
ancy of such a region is at most q q, + q2 where

N'e - cj2 / A <_ 0(2- og- / IN) and

U2 e-,,2 -0g( 2  -'o, N/2 N)

Solving the equations yields

q 0 .(v1 log 3 / 4 N)

< O(plog3/ N)

and
q2 O(Iog3 / 2 N)

< O(plog3 / N)

since p > log 31
4 N and A < OpI). Thus, with very high probability, the discrepancy of

any region with p < :og 3 / ' log log N is O(plog3 / ' N) and we are finally done with tl,e proof
of Theorem 2!

It is worth remarking that the probability bound in Theorem 2 is essentially tight.
For example, the discrepancy of the upper half of the V/Ni x \IN square will exceed

2.1



c vN log 31 4 N with probability 2 c2 1,g 3 / 2 N for some constant cl and c2 . In fact, this ex-
ample illustrates the relationship between the constants in the e(ploge34 N) bound and

,' the constant in the exponent of the very high probability bound. With further work, it is
conceivable that the exact relationship could be specified.

*' 4.4 Extension to Arbitrary Regions
In what follows, we show how to extend the discrepancy bound in Theorem 2 to

arbitrary simply connected regions. The result is not essential to the rest of the paper
(Theorem 2 is sufficient), but it is more natural than Theorem 2 and may eventually prove
to be equally important.

Theorem 3: Consider a set of N points uniformly and independently distributed in the
/N x v/N square. There is a constant c such that with probability 1 - N - )-g"2 IN, every

simply connected region R has discrepancy A(R) :!5 cPer(R) log 3 / 4 N + c logS/2 N.
Proof: The proof is not difficult given Theorem 2 so we will only sketch the argument
here. Divide R into two regions R' and R" where R' consists of all log/4 N x log3 /'N
square subregions of r that are entirely contained in R and where R" = R/R'. Although
R' need not be connected, we can conclude immediately from Theorem 2 that A(R') <
O(p' log 314 N) with very high probability where p' is the perimc er of R'. By elementary
geometry, p' _5 6p where p is the perimeter of R and hence A(R') _5 O(p log 3/ ' N) with
very high probability. Since A(R) A(R') +A(R"), it remains only to show that A(R") <
O(p log3 / N + log3 2 N) with very high probability.

With very high probability, every square subregion of r contains at most O(log3 / 2 N)
random points. Since any square containing part of R" must contain part of the simple
closed curve boundary R, at most 0(1 + p/ log3 / 4 N) squares can contain part of R". Any

such square can contribute at most O(log31 N) to the discrepancy of R" since all squares
have O(log 3/2 N) area and O(1og 31 2 N) random points with very high probability. Thus
A(R") : O(logS/2 N + p log 3/ 4 N) with very high probability, as claimed. I

It is worth remarking that a slightly stronger result can be proved if the very high
probability assumption is relaxed. In particular, with high probability, every region with
perimeter p has discrepancy at most O(log N + p log 1 ' N). (This can be proved by noting
that Theorem 3 handles the case when p log3 / 4 N, and then observing that there are
at most a polynomial number of regions with p _< log 3 / 4 N.) The log3 / 4 N factor cannot
be improved since Shor 1221 has demonstrated the existence of regions having discrepancy
fj(p log 314 N) for p = (v'N) with very high probability.

5. Remarks
Upon reflection, it really should not be surprising that the minimax grid matching

problem arises in so many diverse and useful applications. After all, its dual discrepancy
problem captures a very important measure of expected discrepancies in random data. In
fact, it is precisely the measure that is important to the analysis of many algorithms.

It is likely that other applications of this work will be discovered, and even more
"* likely still that other matching and/or discrepancy problems will arise in the analysis

of algorithms. One such problem that still remains unsolved is the rightward matching

25



problem. In rightward matching, we have N random pluses and N random minuses P1
in a unit square, and are asked to match pluses rightward to minuses in a way which
minimizes the average vertical distance V(P + ) of the matching edges. (Unmatched pluses "' "
are considered to match to the top or bottom of the square.) As a consequence of the
minimax grid matching result in this paper, we can conclude that V(P ±) O(log3 / 4 N)
with very high probability. Improvement of the lower bound of fl(V/1-N) would directly
lead to improved lower bounds on the expected wasted space of any on-line bin packing
algorithm [21, 22].

Discrepancy problems are still of interest in mathematical statistics. For example,
Dudley [7] leaves open the question concerning the maximum expected discrepancy of any
convex 3-dimensional region. Curiously, this appears to be analogous to the 2-dimensional
up-right discrepancy problem analyzed in this paper. We suspect that the bound is again
*(VN log3 / 4 N) but have not proved it.

Multidimensional matching and discrepancy results will also be likely to have conse-
quences for multidimensional packing and allocation problems. For example, see [101.
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